Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5475, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33106486

RESUMO

Accretion onto the supermassive black hole in some active galactic nuclei (AGN) drives relativistic jets of plasma, which dissipate a significant fraction of their kinetic energy into gamma-ray radiation. The location of energy dissipation in powerful extragalactic jets is currently unknown, with implications for particle acceleration, jet formation, jet collimation, and energy dissipation. Previous studies have been unable to constrain the location between possibilities ranging from the sub-parsec-scale broad-line region to the parsec-scale molecular torus, and beyond. Here we show using a simple diagnostic that the more distant molecular torus is the dominant location for powerful jets. This diagnostic, called the seed factor, is dependent only on observable quantities, and is unique to the seed photon population at the location of gamma-ray emission. Using 62 multiwavelength, quasi-simultaneous spectral energy distributions of gamma-ray quasars, we find a seed factor distribution which peaks at a value corresponding to the molecular torus, demonstrating that energy dissipation occurs  ~1 parsec from the black hole (or  ~104 Schwarzchild radii for a 109M⊙ black hole).

2.
Nature ; 521(7553): 495-7, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26017450

RESUMO

Jets of highly energized plasma with relativistic velocities are associated with black holes ranging in mass from a few times that of the Sun to the billion-solar-mass black holes at the centres of galaxies. A popular but unconfirmed hypothesis to explain how the plasma is energized is the 'internal shock model', in which the relativistic flow is unsteady. Faster components in the jet catch up to and collide with slower ones, leading to internal shocks that accelerate particles and generate magnetic fields. This mechanism can explain the variable, high-energy emission from a diverse set of objects, with the best indirect evidence being the unseen fast relativistic flow inferred to energize slower components in X-ray binary jets. Mapping of the kinematic profiles in resolved jets has revealed precessing and helical patterns in X-ray binaries, apparent superluminal motions, and the ejection of knots (bright components) from standing shocks in the jets of active galaxies. Observations revealing the structure and evolution of an internal shock in action have, however, remained elusive, hindering measurement of the physical parameters and ultimate efficiency of the mechanism. Here we report observations of a collision between two knots in the jet of nearby radio galaxy 3C 264. A bright knot with an apparent speed of (7.0 ± 0.8)c, where c is the speed of light in a vacuum, is in the incipient stages of a collision with a slower-moving knot of speed (1.8 ± 0.5)c just downstream, resulting in brightening of both knots--as seen in the most recent epoch of imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...